The Coherent Elastic Neutrino Nucleus Scattering (CENNS) Experiment at the Booster Neutrino Beamline

PHYSICAL REVIEW D 89, 072004 (2014)

A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

S. J. Brice, ¹ R. L. Cooper, ^{2,*} F. DeJongh, ¹ A. Empl, ³ L. M. Garrison, ² A. Hime, ⁴ E. Hungerford, ³ T. Kobilarcik, ¹ B. Loer, ¹ C. Mariani, ⁵ M. Mocko, ⁴ G. Muhrer, ⁴ R. Pattie, ⁶ Z. Pavlovic, ⁴ E. Ramberg, ¹ K. Scholberg, ⁷ R. Tayloe, ² R. T. Thornton, ² J. Yoo, ¹ and A. Young ⁶

¹Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
 ²Indiana University, Bloomington, Indiana 47405, USA
 ³University of Houston, Houston, Texas 77204, USA
 ⁴Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
 ⁵Virginia Tech, Blacksburg, Virginia 24061, USA
 ⁶North Carolina State University, North Carolina 27695, USA
 ⁷Duke University, Durham, North Carolina 27708, USA
 (Received 25 November 2013; published 3 April 2014)

Robert Cooper

http://neutrino.indiana.edu/rlcooper

Outline

- Physics Motivation for CENNS
- How do we measure CENNS?
 - i.) Neutrino production
 - ii.) Detection
 - iii.) Background suppression
- The SciBath Detector
- Future work and conclusions

"Wait a minute! Isn't anyone here a real sheep?"

Describing the CENNS Signal

To probe a "large" nucleus (few × 10⁻¹⁵ m)

$$E_{\nu} \lesssim \frac{hc}{R_N} \cong 50 \text{ MeV}$$

Detector signature is the recoiling nucleus

Recoil energy that is deposited

$$E_r^{\rm max} \simeq \frac{2E_\nu^2}{M} \simeq 50 \text{ keV}$$

This is quite small for particle & nuclear physics → Dark Matter

Structure of the CENNS Signal

Predicted scattering rate

$$\frac{d\sigma}{dE} = \frac{G_F^2}{4\pi} \left[\frac{(1 - 4\sin^2\theta_w)Z - N}{2} M \left(1 - \frac{ME}{2E_\nu^2} \right) F(Q^2)^2 \right]$$

 $\approx 0 \rightarrow$ protons have little influence

square of sum → part of coherence condition

nuclear form factor

→ distribution of neutrons

• Recoil energy (M^{-1}) and rate (N^2)

v Cross Sections vs. Energy Cross-section (10⁻³⁸ cm²) Coherent 10⁻² 10⁻³ Bere be bragons 10⁻⁴ 10⁻⁵ electrons 10⁻⁶ 70 80 90 100 Neutrino Energy (MeV) Image from K. Scholberg

Physics Cases for CENNS

- Never been observed!
- Oscillations (spatially)
- Form factors
- Supernova physics
- Non-standard interactions
- Irreducible dark matter background

Physics Cases for CENNS

- Never been observed!
- Oscillations (spatially)
- Form factors
- Supernova physics
- Non-standard Interactions
- Irreducible dark matter background

4th vs 2nd Form Factor Moments

$$F(Q^2) = \frac{1}{Q_W} \left[F_n(Q^2) - (1 - 4\sin^2\theta_W) F_p(Q^2) \right]$$

$$F_n(Q^2) \approx \int \rho_n(r) \left(1 - \frac{Q^2}{3!} r^2 + \frac{Q^4}{5!} r^4 - \frac{Q^6}{7!} r^6 + \cdots \right) r^2 dr$$

Patton et al., arXiv/1207.0693

Physics Cases for CENNS

- Never been observed!
- Oscillations (spatially)
- Form factors
- Supernova physics
- Non-standard interactions
- Irreducible dark matter background

Dark Matter Sensitivity

L. Baudis, Phys.Dark Univ. 4 (2014) 50-59 arXiv:1408.4371

MiniCLEAN for BNB CENNS

 A. Hime already gave an excellent review of MiniCLEAN for BNB CENNS measurement

½ ton LAr scintillation detector → 100 events / yr

Inner

Vessel

Neutron Backgrounds

- Few-MeV neutrons will deposit ~10 keV in LAr
- Accelerator produces all energies up to 8 GeV
- Shielding is needed
- Beam-correlated neutrons mimic neutrino signal

Neutron Scatter on ⁴⁰Ar

$$E_r^{\text{max}} = \frac{4\mathcal{M}}{(\mathcal{M}+1)^2} E_n \simeq 0.1 E_n$$

where
$$\mathcal{M} = M/m_n$$

Elastic Scattering Connection: ν, n, χ

- All these particle cause elastic scattering on argon
- Indistinguishable signal → ~10 keV nuclear recoil

SciBath Detector

- 80 L open volume of mineral oil based liquid scintillator
- Neutrons recoil off protons, create scintillation
- 768 wavelength shifting fibers readout
- IU built custom digitizer: 12 bit, 20 MS / s

SciBath Detector

- 80 L open volume of mineral oil based liquid scintillator
- Neutrons recoil off protons, create scintillation
- 768 wavelength shifting fibers readout
- IU built custom digitizer: 12 bit, 20 MS / s

SciBath Detector

- 80 L open volume of mineral oil based liquid scintillator
- Neutrons recoil off protons, create scintillation
- 768 wavelength shifting fibers readout
- IU built custom digitizer: 12 bit, 20 MS / s

Sample Muon Candidate Event

Event Num: 109 (1206) Multiplicity: 204

Total PEs: 412.6

FNAL Neutrino Seminar -- R.L. Cooper

Sample Neutron Candidate Event

3

3

X Axis Fiber Position

[2] c1/

0 0 0 0 2 0 0

뎨

5 10 15 20

FNAL Neutrino Seminar -- R.L. Cooper

[2] [1

n / μ Particle Discrimination

Calibrating the SciBath Detector

- Low-light LED pulser (Y→Z)
- Use cosmic rays with known energy deposit (X→Y) requires previous calibration to count photons
- Detect 6 PEs / MeV→ want to improve

Calibrating the SciBath Detector

- Low-light LED pulser (Y→Z)
- Use cosmic rays with known energy deposit (X→Y) requires previous calibration to count photons
- Detect 6 PEs / MeV
 → want to improve

Single-PE LED Calibration

Calibrating the SciBath Detector

- Low-light LED pulser (Y→Z)
- Use cosmic rays with known energy deposit (X→Y) requires previous calibration to count photons
- Detect 6 PEs / MeV
 → want to improve

MIP Cosmic Ray Calibration Peak

Fermilab Measurement Sites

MI-12 Neutron Background Run

- Neutron flux ~20 m from target
- In-line behind beam target (ground)
- 29 Feb. 23 Apr., 2012
- 4.9x10¹⁹ total protons on target (POT) (4.5x10¹² per pulse)

MI-12 Beam Time Per PE "Group"

- HIGH PE group shows beam time structure
- MEDIUM PE group has few-µs excess – slower neutrons arriving later
- LOWEST PE group has significant excess 200 μs lifetime from n(p, d)γ neutron capture reaction

BNB Neutron Energy Spectrum

- E_n unfolded from PEs spectrum simulation of detector response
- 2.44 ± 0.34 pulse⁻¹ m⁻² $(E_n > 40 \text{ MeV})$
- Lose sensitivity > 200 MeV;
- Neutron spectrum
 20 m from BNB

BNB Neutron Energy Spectrum

- E_n unfolded from PEs spectrum simulation of detector response
- 2.44 ± 0.34 pulse⁻¹ m⁻² $(E_n > 40 \text{ MeV})$
- Lose sensitivity > 200 MeV;
- Neutron spectrum
 20 m from BNB

BNB Neutron Energy Spectrum

- E_n unfolded from PEs spectrum simulation of detector response
- $2.44 \pm 0.34 \text{ pulse}^{-1} \text{ m}^{-2}$ $(E_n > 40 \text{ MeV})$
- Lose sensitivity > 200 MeV;
- Neutron spectrum 20 m from BNB

Unfolded Neutron Energy Spectrum

Validation of Unfolding Techniques

- Cosmic ray neutron spectrum also unfolded
- Gordon et al., IEEE TNS 51, (2004) 3427 parameterizes surface neutron flux from Bonner sphere data
- Energy shape matches, overall scale factor needed

Direction Spectrum

 High PE protons will be tracklike; can be imaged

- Principle component analysis yields eigenvector
- Back-projecting direction spectrum tends to point upstream of target
- Tracking validated with cosmic rays and NuMI beam

Direction Spectrum

- High PE protons will be tracklike; can be imaged
- Principle component analysis yields eigenvector
- Back-projecting direction spectrum tends to point upstream of target
- Tracking validated with cosmic rays and NuMI beam

Validation of SciBath Tracking

Tracking algorithms validated with NuMI underground data

Capture-Gated Neutrons at MI-12

• At surface, accidental rate (and high primary rate) precludes $n(p,d)\gamma$ capture gating \rightarrow clear statistical sensitivity to thermal captures

Capture-Gated Neutrons at NuMI

• NuMI near hall (100 m overburden) capture-gating neutron spectroscopy technique demonstrated (L. Garrison thesis)

NuMI Beam Neutron Capture Timing

NuMI Beam Neutron Energy Primary in beam ×10⁻⁶ Tagged n Capture Sec Neutron Flux (cm⁻² s⁻¹ MeV⁻¹) 0. 1. 5. Multiplicity ≥ 6 Pri PE > 35 12.5 < Sec PE < 35 If Pri PE>250, hEVal<115 16 < ΔT < 450 μs Fiducial pri/sec: 100/50% **BG Subtracted** 366 ± 41 Events 0.1 0.05 20 40 60 80 100 120 MeV

Capture-Gated Neutrons at NuMI

• NuMI near hall (100 m overburden) capture-gating neutron spectroscopy technique demonstrated (L. Garrison thesis)

NuMI Cosmic Neutron Capture Timing

NuMI Cosmic Neutron Energy

Current Studies

- 2012 measurements at one position with no shielding
- We are improving SciBath, building concrete shielding
- Locate a viable location for CENNS & CAPTAIN
- Survey the area with portable detector

Current Studies

- 2012 measurements at one position with no shielding
- We are improving SciBath, building concrete shielding
- Locate a viable location for CENNS & CAPTAIN
- Survey the area with portable detector

Beam Off-Target Rates (> 0.5 MeV)

50 m Absorber

- 6 m from Fe beam stop
- 310 n / 10¹⁶ POT

Collimator

- 8 m from Be beam target
- 5608 n / 10¹⁶ POT

Stairwell

- 9 m from Be beam target
- 1384 n / 10¹⁶ POT

Target 90° FOX

- 20 m from Be beam target
- 390 n / 10¹⁶ POT

2012 SciBath Loc

- 20 m from Be beam target
- 211 n / 10¹⁶ POT

Neutron spectrum unfolding underway

CENNS-10

Goals

- Develop LAr technology
- Perform very high-energy neutron calibrations

Status

- Moved to Indiana
- Planning for calibration at Los Alamos WNR neutron beam

CENNS-10

Goals

- Develop LAr technology
- Perform very high-energy neutron calibrations

Status

- Moved to Indiana
- Planning for calibration at Los Alamos WNR neutron beam

Summary of BNB Work for CENNS

SciBath

Fast neutron measurements (10-200 MeV)

MiniCLEAN

First CENNS measurement

EJ-301 Cells

Portable array (0.5-20 MeV)

preparatory measurements

CENNS-10

10 kg LAr testing prototype

CAPTAIN

Low-E neutrino cross sections

Summer 2015 Plans

- BNB: Plan to measure near BNB target building for CENNS, CAPTAIN, and general SBN program (May or June for 1 month)
- SciBooNE: Measure high-energy neutrino-induced neutrons and constrain thermal neutron rates from n(p,d)γ capture rates:

relevant for ANNIE, microBooNE, and SBN (May *or* June for 1 month)

BACKUPS

Structure of the CENNS Signal

Predicted scattering rate

$$\frac{d\sigma}{dE} = \frac{G_F^2}{4\pi} \left[\frac{(1 - 4\sin^2\theta_w)Z - N}{2} M \left(1 - \frac{ME}{2E_\nu^2} \right) F(Q^2)^2 \right]$$

Detection Rate [ton-1 year-1]

≈ 0 → protons have little influence

square of sum → part of coherence condition

nuclear form factor

→ distribution of neutrons

Recoil energy (M^{-1}) and rate (N^2)

MI-12 Neutron Background Run

- Neutron flux ~20 m from target
- In-line behind beam target (ground)
- 29 Feb. 23 Apr., 2012
- 4.9x10¹⁹ total protons on target (POT) (4.5x10¹² per pulse)

Utility Trailer for BNB Measurement

CENNS-10 On the Move

Off-Target Runs

